Skip to main content
  • Published:

Using the cre-lox recombination system to assess functional impairment caused by amino acid substitutions in yeast proteins

Abstract

A method was developed to assess the functional significance of a sequence motif in yeast Upf3p, a protein required for nonsense-mediated mRNA decay (NMD). The motif lies at the edge of the Upf3p-Upf2p interaction domain, but at the same time resembles the canonical leucine-rich nuclear export sequence (NES) found in proteins that bind Crm1p exportin. To test the function of the putative NES, site-directed mutations that cause substitutions of conserved NES-A residues were first selected to identify hypermorphic alleles. Next, a portable Crm1p-binding NES from HIV-1 Rev protein that functions in yeast was fused en masse to the C-terminus of variant Upf3 proteins using loxP sites recognized by bacterial cre-recombinase. Finally, variant Upf3-Rev proteins that were functional in NMD were selected and examined for the types of amino acid substitutions present in NES-A. The mutational analysis revealed that amino acid substitutions in the Upf3 NES impair both nuclear export and the Upf2p-Upf3p interaction, both of which are required for Upf3p to function in NMD. The method described in this report could be modified for the genetic analysis of a variety of portable protein domains.

References

  1. Leeds P, Peltz SW, Jacobson A, Culbertson MR. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev 1991; 5:2303–2314.

    Article  PubMed  CAS  Google Scholar 

  2. Leeds P, Wood JM, Lee BS, Culbertson MR. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:2165–2177.

    PubMed  CAS  Google Scholar 

  3. Cui Y, Hagan KW, Zhang S, Peltz SW. Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev 1995; 9:423–436.

    Article  PubMed  CAS  Google Scholar 

  4. He F, Jacobson A. Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev 1995; 9:437–454.

    Article  PubMed  CAS  Google Scholar 

  5. Lee BS, Culbertson MR. Identification of an additional gene required for eukaryotic nonsense mRNA turnover. Proc Natl Acad Sci USA 1995; 92:10354–10358.

    Article  PubMed  CAS  Google Scholar 

  6. Shirley RL, Lelivelt MJ, Schenkman LR, Dahlseid JN, Culbertson MR. A factor required for nonsense-mediated mRNA decay in yeast is exported from the nucleus to the cytoplasm by a nuclear export signal sequence. J Cell Sci 1998; 111:3129–3143.

    PubMed  CAS  Google Scholar 

  7. Shirley RL, Ford AS, Richards R, Albertini M, Culbertson MR. Nuclear Import of Upf3p Is Mediated by Importin-a/b and Export to the Cytoplasm Is Required for a Functional Nonsense-Mediated mRNA Decay Pathway in Yeast. Genetics 2002; 161:1465–1482.

    PubMed  CAS  Google Scholar 

  8. Fornerod M, Ohno M, Yoshida M, Mattaj IW. CRM1 is an export receptor for leucine-rich nuclear export signals (see comments). Cell 1997; 90:1051–1060.

    Article  PubMed  CAS  Google Scholar 

  9. Stade K, Ford CS, Guthrie C, Weis K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 1997; 90:1041–1050.

    Article  PubMed  CAS  Google Scholar 

  10. Izaurralde E, Adam S. Transport of macromolecules between the nucleus and the cytoplasm. Rna 1998; 4:351–364.

    PubMed  CAS  Google Scholar 

  11. Metzger D, Feil R. Engineering the mouse genome by sitespecific recombination. Curr Opin Biotechnol 1999; 10:470–476.

    Article  PubMed  CAS  Google Scholar 

  12. Sauer B. Cre/lox: one more step in the taming of the genome. Endocrine 2002; 19:221–228.

    Article  PubMed  CAS  Google Scholar 

  13. Fritz CC, Green MR. HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAs. Current Biology 1996; 6:848–854.

    Article  PubMed  CAS  Google Scholar 

  14. Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995; 82:475–483.

    Article  PubMed  CAS  Google Scholar 

  15. Meyer BE, Malim MH. The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev 1994; 8:1538–1547.

    Article  PubMed  CAS  Google Scholar 

  16. Neville M, Stutz F, Lee L, Davis LI, Rosbash M. The importin-beta family member Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr Biol 1997; 7:767–775.

    Article  PubMed  CAS  Google Scholar 

  17. Grey M, Brendel M. A ten-minute protocol for transforming Saccharomyces cerevisiae by electroporation. Curr Genet 1992; 22:335–336.

    Article  PubMed  CAS  Google Scholar 

  18. Sikorski RS, Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989; 122:19–27.

    PubMed  CAS  Google Scholar 

  19. Sauer B. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 1987; 7:2087–2096.

    PubMed  CAS  Google Scholar 

  20. Kaufer NF, Fried HM, Schwindinger WF, Jasin M, Warner JR. Cycloheximide resistance in yeast: the gene and its protein. Nucleic Acids Res 1983; 11:3123–3135.

    Article  PubMed  CAS  Google Scholar 

  21. He F, Peltz SW, Donahue JL, Rosbash M, Jacobson A. Stabilization and ribosome association of unspliced premRNAs in a yeast upf1-mutant. Proc Natl Acad Sci USA 1993; 90:7034–7038.

    Article  PubMed  CAS  Google Scholar 

  22. Atkin AL, Schenkman LR, Eastham M, Dahlseid JN, Lelivelt MJ, Culbertson MR. Relationship between yeast polyribosomes and Upf proteins required for nonsense mRNA decay. J Biol Chem 1997; 272:22163–22172.

    Article  PubMed  CAS  Google Scholar 

  23. Ursic D, Sedbrook JC, Himmel KL, Culbertson MR. The essential yeast Tcp1 protein affects actin and microtubules. Mol Biol Cell 1994; 5:1065–1080.

    PubMed  CAS  Google Scholar 

  24. James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two- hybrid selection in yeast. Genetics 1996; 144:1425–1436.

    PubMed  CAS  Google Scholar 

  25. He F, Brown AH, Jacobson A. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol Cell Biol 1997; 17:1580–1594.

    PubMed  CAS  Google Scholar 

  26. Kadlec J, Izaurralde E, Cusack S. The structural basis for the interaction between nonsense-mediated mRNA decay factors UPF2 and UPF3. Nature Struct Mol Biol 2004; 11: In press.

  27. Lykke-Andersen J, Shu MD, Steitz JA. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 2000; 103:1121–1131.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Culbertson.

Additional information

Published: October 1, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirley, R.L., Richards, M.R. & Culbertson, M.R. Using the cre-lox recombination system to assess functional impairment caused by amino acid substitutions in yeast proteins. Biol. Proced. Online 6, 209–219 (2004). https://doi.org/10.1251/bpo91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo91

Indexing terms