Skip to main content

A uniform procedure for the purification of CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1

Abstract

We have established a uniform procedure for the expression and purification of the cyclin-dependent kinases CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1. We attach a His6-tag to one of the subunits of each complex and then co-express it together with the other subunits in Spodoptera frugiperda insect cells. The CDK complexes are subsequently purified by Ni2+-NTA and Mono S chromatography. This approach generates large amounts of active recombinant kinases that are devoid of contaminating kinase activities. Importantly, the properties of these recombinant kinases are similar to their natural counterparts (Pinhero et al. 2004, Eur J Biochem 271:1004–14). Our protocol provides a novel systematic approach for the purification of these three (and possibly other) recombinant CDKs.

Abbreviations

CDK:

cyclin-dependent kinase

CTD:

carboxyl-terminal domain of RNA polymerase II

Cyc:

cyclin

MBP:

myelin basic protein

References

  1. Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. The dynamics of cyclin dependent kinase structure. Annu Rev Cell Dev Biol 1997; 13(6):261–291.

    Article  PubMed  CAS  Google Scholar 

  2. Kobor MS, Greenblatt J. Regulation of transcription elongation by phosphorylation. Biochim Biophys Acta 2002; 1577(2):261–275.

    PubMed  CAS  Google Scholar 

  3. Palancade B, Bensaude O. Investigating RNA polymerase II carboxyl-terminal domain (CTD) phosphorylation. Eur J Biochem 2003; 270(19):3859–3870.

    Article  PubMed  CAS  Google Scholar 

  4. Ramanathan YS, Rajpara M, Reza SM, Lees E, Shuman S, Mathews MB, Pe’ery T. Three RNA polymerase II carboxyl-terminal domain kinases display distinct substrate preferences. J Biol Chem 2001; 276(14):10913–10920.

    Article  PubMed  CAS  Google Scholar 

  5. Rickert P, Corden JL, Lees E. Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases. Oncogene 1999; 18(4):1093–1102.

    Article  PubMed  CAS  Google Scholar 

  6. Price DH. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 2000; 20(8):2629–2634.

    Article  PubMed  CAS  Google Scholar 

  7. Ping YH, Rana TM. Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes. J Biol Chem 1999; 274(11):7399–7404.

    Article  PubMed  CAS  Google Scholar 

  8. Nigg EA. Cyclin-dependent kinase-7 – at the cross-roads of transcription, DNA-repair and cell-cycle control. Curr Opin Cell Bio 1996; 8(3):312–317.

    Article  CAS  Google Scholar 

  9. Rochette-Egly C, Adam S, Rossignol M, Egly JM, Chambon P. Stimulation of RAR alpha activation function AF-1 through binding to the general transcription factor TFIIH and phosphorylation by CDK7. Cell 1997; 90(1):97–107.

    Article  PubMed  CAS  Google Scholar 

  10. Bastien J, Adam-Stitah S, Riedl T, Egly JM, Chambon P, Rochette-Egly C. TFIIH interacts with the retinoic acid receptor gamma and phosphorylates its AF-1-activating domain through cdk7. J Biol Chem 2000; 275(29):21896–21904.

    Article  PubMed  CAS  Google Scholar 

  11. Chen D, Riedl T, Washbrook E, Pace PE, Coombes RC, Egly JM, Ali S. Activation of estrogen receptor alpha by S118 phosphorylation involves a ligand-dependent interaction with TFIIH and participation of CDK7. Mol Cell 2000; 6(1):127–137.

    Article  PubMed  CAS  Google Scholar 

  12. Inamoto S, Segil N, Pan ZQ, Kimura M, Roeder RG. The cyclin-dependent kinase-activating kinase (CAK) assembly factor, MAT1, targets and enhances CAK activity on the POU domains of octamer transcription factors. J Biol Chem 1997; 272(47):29852–29858.

    Article  PubMed  CAS  Google Scholar 

  13. Ko LJ, Shieh SY, Chen X, Jayaraman L, Tamai K, Taya Y, Prives C, Pan ZQ. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol Cell Biol 1997; 17(21):7220–7229.

    PubMed  CAS  Google Scholar 

  14. Pinhero R, Liaw P, Bertens K, Yankulov K. Three cyclin-dependent kinases preferentially phosphorylate different parts of the C-terminal domain of the large subunit of RNA polymerase II. Eur J Biochem 2004; 271(5):1004–1014.

    Article  PubMed  CAS  Google Scholar 

  15. Peng J, Zhu Y, Milton JT, Price DH. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 1998; 12(5):755–762.

    Article  PubMed  CAS  Google Scholar 

  16. Richardson CD, Banville M, Lalumiere M, Vialard J, Meighen EA. Bacterial luciferase produced with rapid-screening baculovirus vectors is a sensitive reporter for infection of insect cells and larvae. Intervirology 1992; 34(4):213–227.

    PubMed  CAS  Google Scholar 

  17. Fisher R, Jin P, Chamberlin H, Morgan D. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 1995; 83(1):47–57.

    Article  PubMed  CAS  Google Scholar 

  18. Yankulov KY, Bentley DL. Regulation of CDK7 substrate specificity by MAT1 and TFIIH. Embo J 1997; 16(7):1638–1646.

    Article  PubMed  CAS  Google Scholar 

  19. Kikkawa U, Minakuchi R, Takai Y, Nishizuka Y. Calciumactivated, phospholipid-dependent protein kinase (protein kinase C) from rat brain. Methods Enzymol 1983; 99:288–298.

    Article  PubMed  CAS  Google Scholar 

  20. Rossignol M, Egly JM. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. Embo J 1997; 16(7):1628–1637.

    Article  PubMed  CAS  Google Scholar 

  21. Fisher RP, Morgan DO. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 1994; 78(4):713–724.

    Article  PubMed  CAS  Google Scholar 

  22. Larochelle S, Chen J, Knights R, Pandur J, Morcillo P, Erdjument-Bromage H, Tempst P, Suter B, Fisher RP. T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity. Embo J 2001; 20(14):3749–3759.

    Article  PubMed  CAS  Google Scholar 

  23. Ljungman M, Paulsen MT. The cyclin-dependent kinase inhibitor roscovitine inhibits RNA synthesis and triggers nuclear accumulation of p53 that is unmodified at Ser15 and Lys382. Mol Pharmacol 2001; 60(4):785–789.

    PubMed  CAS  Google Scholar 

  24. Schang LM. Cyclin-dependent kinases as cellular targets for antiviral drugs. J Antimicrob Chemother 2002; 50(6):779–792.

    Article  PubMed  CAS  Google Scholar 

  25. Taylor SL, Kinchington PR, Brooks A, Moffat JF. Roscovitine, a cyclin-dependent kinase inhibitor, prevents replication of varicella-zoster virus. J Virol 2004; 78(6):2853–2862.

    Article  PubMed  CAS  Google Scholar 

  26. Sano M, Abdellatif M, Oh H, Xie M, Bagella L, Giordano A, Michael LH, DeMayo FJ, Schneider MD. Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat Med 2002; 8(11):1310–1317.

    Article  PubMed  CAS  Google Scholar 

  27. Zhou M, Halanski MA, Radonovich MF, Kashanchi F, Peng J, Price DH, Brady JN. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol Cell Biol 2000; 20(14):5077–5086.

    Article  PubMed  CAS  Google Scholar 

  28. Dubois MF, Vincent M, Vigneron M, Adamczewski J, Egly JM, Bensaude O. Heat-shock inactivation of the tfiih-associated kinase and change in the phosphorylation sites on the c-terminal domain of RNA-polymerase-II. Nucleic Acids Research 1997; 25:694–700.

    Article  PubMed  CAS  Google Scholar 

  29. Yee A, Wu L, Liu L, Kobayashi R, Xiong Y, Hall FL. Biochemical characterization of the human cyclin-dependent protein kinase activating kinase. J Biol Chem 1996; 271(1):471–477.

    Article  PubMed  CAS  Google Scholar 

  30. Adamczewski JP, Rossingol M, Tassan JP, Nigg EA, Moncollin V, Egly JM. Mat1, cdk7 and cyclin-H form a kinase complex which is uv light-sensitive upon association with TFIIH. Embo J 1996; 15(8):1877–1884.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reena Pinhero.

Additional information

Published: August 18, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinhero, R., Liaw, P. & Yankulov, K. A uniform procedure for the purification of CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1. Biol. Proced. Online 6, 163–172 (2004). https://doi.org/10.1251/bpo86

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo86

Indexing terms