Skip to main content
  • Published:

Ribosome formation from subunits studied by stopped-flow and rayleigh light scattering

Abstract

Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is highlighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.

References

  1. Gualerzi CO, Pon CL. Initiation of mRNA translation in prokaryotes. Biochemistry 1990; 29:5881–5889.

    Article  PubMed  CAS  Google Scholar 

  2. Pestova TV, Hellen CU. The structure and function of initiation factors in eukaryotic protein synthesis. Cell Mol Life Sci 2000; 57:651–674.

    Article  PubMed  CAS  Google Scholar 

  3. Roll-Mecak A, Shin BS, Dever TE, Burley SK. Engaging the ribosome: universal IFs of translation. Trends Biochem Sci 2001; 26:705–709.

    Article  PubMed  CAS  Google Scholar 

  4. Kyrpides NC, Woese CR. Universally conserved translation initiation factors. Proc Natl Acad Sci USA 1998; 95:224–228.

    Article  PubMed  CAS  Google Scholar 

  5. Pestova TV, Kolupaeva VG. The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 2002; 16:2906–2922.

    Article  PubMed  CAS  Google Scholar 

  6. Kisselev L, Ehrenberg M, Frolova L. Termination of translation: interplay of mRNA, rRNAs and release factors? Embo J 2003; 22:175–182.

    Article  PubMed  CAS  Google Scholar 

  7. Freistroffer DV, Pavlov MY, MacDougall J, Buckingham RH, Ehrenberg M. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. Embo J 1997; 16:4126–4133.

    Article  PubMed  CAS  Google Scholar 

  8. Zavialov AV, Buckingham RH, Ehrenberg M. A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 2001; 107:115–124.

    Article  PubMed  CAS  Google Scholar 

  9. Zavialov AV, Mora L, Buckingham RH, Ehrenberg M. Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. Mol Cell 2002; 10:789–798.

    Article  PubMed  CAS  Google Scholar 

  10. Karimi R, Pavlov MY, Buckingham RH, Ehrenberg M. Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell 1999; 3:601–609.

    Article  PubMed  CAS  Google Scholar 

  11. Antoun A, Pavlov MY, Andersson K, Tenson T, Ehrenberg M. The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. Embo J 2003; 22:5593–5601.

    Article  PubMed  CAS  Google Scholar 

  12. Grunberg-Manago M, Dessen P, Pantaloni D, Godefroy-Colburn T, Wolfe AD, Dondon J. Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes. J Mol Biol 1975; 94:461–478.

    Article  PubMed  CAS  Google Scholar 

  13. Wishnia A, Boussert A, Graffe M, Dessen PH, Grunberg-Manago M. Kinetics of the reversible association of ribosomal subunits: stopped-flow studies of the rate law and of the effect of Mg2+. In: J Mol Biol, vol. 93. pp. 499–415; 1975: 499–415.

    Article  PubMed  CAS  Google Scholar 

  14. Blumberg BM, Nakamoto T, Kezdy FJ. Kinetics of initiation of bacterial protein synthesis. Proc Natl Acad Sci USA 1979; 76:251–255.

    Article  PubMed  CAS  Google Scholar 

  15. Pestova TV, Lomakin IB, Lee JH, Choi SK, Dever TE, Hellen CU. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 2000; 403:332–335.

    Article  PubMed  CAS  Google Scholar 

  16. Noll M, Hapke B, Noll H. Structural dynamics of bacterial ribosomes. II. Preparation and characterization of ribosomes and subunits active in the translation of natural messenger RNA. J Mol Biol 1973; 80:519–529.

    Article  PubMed  CAS  Google Scholar 

  17. Jelenc PC, Kurland CG. Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc Natl Acad Sci USA 1979; 76:3174–3178.

    Article  PubMed  CAS  Google Scholar 

  18. Pavlov MY, Freistroffer DV, MacDougall J, Buckingham RH, Ehrenberg M. Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. Embo J 1997; 16:4134–4141.

    Article  PubMed  CAS  Google Scholar 

  19. Rodnina MV, Wintermeyer W. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Proc Natl Acad Sci USA 1995; 92:1945–1949.

    Article  PubMed  CAS  Google Scholar 

  20. Soffientini A, Lorenzetti R, Gastaldo L, Parlett JH, Spurio R, La Teana A, Islam K. Purification procedure for bacterial translational initiation factors IF2 and IF3. Protein Expr Purif 1994; 5:118–124.

    Article  PubMed  CAS  Google Scholar 

  21. Ehrenberg M, Bilgin N, Kurland C. Design and use of a fast and accurate in vitro translation system. In: Ribosomes and Protein Synthesis. A practical Approach. pp. 101–128. Oxford: Oxford University Press; 1990: 101–128.

    Google Scholar 

  22. Marquardt DW. An algorithm for least squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963; 11: 431–441.

    Article  Google Scholar 

  23. Cenatiempo Y, Deville F, Dondon J, Grunberg-Manago M, Sacerdot C, Hershey JW, Hansen HF, Petersen HU, Clark BF, Kjeldgaard M, et al. The protein synthesis initiation factor 2 G-domain. Study of a functionally active C-terminal 65-kilodalton fragment of IF2 from Escherichia coli. Biochemistry 1987; 26:5070–5076.

    Article  PubMed  CAS  Google Scholar 

  24. Sacerdot C, Vachon G, Laalami S, Morel-Deville F, Cenatiempo Y, Grunberg-Manago M. Both forms of translational initiation factor IF2 (alpha and beta) are required for maximal growth of Escherichia coli. Evidence for two translational initiation codons for IF2 beta. J Mol Biol 1992; 225:67–80.

    Article  PubMed  CAS  Google Scholar 

  25. Tomsic J, Vitali LA, Daviter T, Savelsbergh A, Spurio R, Striebeck P, Wintermeyer W, Rodnina MV, Gualerzi CO. Late events of translation initiation in bacteria: a kinetic analysis. Embo J 2000; 19:2127–2136.

    Article  PubMed  CAS  Google Scholar 

  26. Ingraham JL, Maaloe O, Neidhardt FC. Growth of the Bacterial Cell. Sunderland, MA 01375, USA: Sinauer Associates Inc.; 1983.

    Google Scholar 

  27. Farewell A, Neidhardt FC. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol 1998; 180:4704–4710.

    PubMed  CAS  Google Scholar 

  28. Meinnel T, Blanquet S. Maturation of pre-tRNA(fMet) by Escherichia coli RNase P is specified by a guanosine of the 5’-flanking sequence. J Biol Chem 1995; 270:15908–15914.

    Article  PubMed  CAS  Google Scholar 

  29. Sambrook J, Russell D. Preparation and transformation of competent Ecoli using callcium chloride. In: Molecular Cloning (A Laboratory Manual) Edited by Spedding G. pp. 116–118. New York: Cold Spring Harbor Laboratory Press; 2001: 116–118.

    Google Scholar 

  30. Dubnoff JS, Maitra U. Isolation and properties of polypeptide chain initiation factor FII from Escherichia coli: evidence for a dual function. Proc Natl Acad Sci U S A 1971; 68:318–323.

    Article  PubMed  CAS  Google Scholar 

  31. Ramesh V, Gite S, Li Y, RajBhandary UL. Suppressor mutations in Escherichia coli methionyl-tRNA formyltransferase: role of a 16-amino acid insertion module in initiator tRNA recognition. Proc Natl Acad Sci USA 1997; 94:13524–13529.

    Article  PubMed  CAS  Google Scholar 

  32. Gillam IC, Tener GM. The Use of BD-Cellulose in Separating Transfer RNAs. Methods in Enzymology 1971; 20:55–71.

    Article  Google Scholar 

  33. Rodnina MV, Semenkov YP, Wintermeyer W. Purification of fMet-tRNA(fMet) by fast protein liquid chromatography. Anal Biochem 1994; 219:380–381.

    Article  PubMed  CAS  Google Scholar 

  34. Forster AC, Weissbach H, Blacklow SC. A simplified reconstitution of mRNA-directed peptide synthesis: activity of the epsilon enhancer and an unnatural amino acid. Anal Biochem 2001; 297:60–70.

    Article  PubMed  CAS  Google Scholar 

  35. Cantor CR, Schimmel PR. Light Scattering. In: Biophysical Chemistry. pp. 838–842. New York: W.H. Freeman and Company; 1980: 838–842.

    Google Scholar 

  36. van Holde KE. Scattering. In: Physical Biochemistry. pp. 209–224. Englewwood Cliffd, NJ 0732: Prentice-Hall; 1985: 209–224.

    Google Scholar 

  37. Belloni L. Interacting monodisperse and polydisperse spheres. In: Neutron, X-Ray and Light Scattering Edited by Linder P, Zemb T. pp. 135–155. Amsterdam: Elsevier Science; 1991: 135–155.

    Google Scholar 

  38. Velev OD, Kaler EW, Lenhoff AM. Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen. Biophys J 1998; 75:2682–2697.

    Article  PubMed  CAS  Google Scholar 

  39. Wen J, Arakawa T, Philo JS. Size-exclusion chromatography with on-line light-scattering, absorbance, and refractive index detectors for studying proteins and their interactions. Anal Biochem 1996; 240:155–166.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Måns Ehrenberg.

Additional information

Published: March 19, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoun, A., Pavlov, M.Y., Tenson, T. et al. Ribosome formation from subunits studied by stopped-flow and rayleigh light scattering. Biol. Proced. Online 6, 35–54 (2004). https://doi.org/10.1251/bpo71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo71

Indexing terms