Skip to main content

Force and compliance measurements on living cells using atomic force microscopy (AFM)

Abstract

We describe the use of atomic force microscopy (AFM) in studies of cell adhesion and cell compliance. Our studies use the interaction between leukocyte function associated antigen-1 (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) as a model system. The forces required to unbind a single LFA-1/ICAM-1 bond were measured at different loading rates. This data was used to determine the dynamic strength of the LFA-1/ICAM-1 complex and characterize the activation potential that this complex overcomes during its breakage. Force measurements acquired at the multiple- bond level provided insight about the mechanism of cell adhesion. In addition, the AFM was used as a microindenter to determine the mechanical properties of cells. The applications of these methods are described using data from a previous study.

Abbreviations

AFM:

atomic force microscope

LFA-1:

leukocyte function-associated antigen-1

ICAM-1:

intercellular adhesion molecule-1

PMA:

phorbol myristate acetate

References

  1. Sanchez-Madrid F, Simon P, Thompson S, Springer TA. Mapping of antigenic and functional epitopes on the alpha- and beta-subunits of two related mouse glycoproteins involved in cell interactions, LFA-1 and Mac-1. J Exp Med 1983; 158(2):586–602.

    Article  PubMed  CAS  Google Scholar 

  2. Wojcikiewicz EP, Zhang X, Chen A, Moy VT. Contributions of molecular binding events and cellular compliance to the modulation of leukocyte adhesion. Journal of Cell Science 2003; 116(12):2531–2539.

    Article  Google Scholar 

  3. Zhang X, Wojcikiewicz E, Moy VT. Force spectroscopy of the leukocyte function-associated antigen- 1/intercellular adhesion molecule-1 interaction. Biophys J 2002; 83(4):2270–2279.

    Article  PubMed  CAS  Google Scholar 

  4. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986; 56:930–933.

    Article  PubMed  Google Scholar 

  5. Lee GU, Kidwell DA, Colton RJ. Sensing discrete streptavidinbiotin interactions with AFM. Langmuir 1994; 10(2):354–361.

    Article  CAS  Google Scholar 

  6. Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Muller DJ. Unfolding pathways of individual bacteriorhodopsins. Science 2000; 288(5463):143–146.

    Article  PubMed  CAS  Google Scholar 

  7. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997; 276(5315):1109–1112.

    Article  PubMed  CAS  Google Scholar 

  8. Bell GI. Models for the specific adhesion of cells to cells. Science 1978; 200:618–627.

    Article  PubMed  CAS  Google Scholar 

  9. Evans E, Ritchie K, Merkel R. Sensitive technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J 1995; 68:2580–2587.

    Article  PubMed  CAS  Google Scholar 

  10. Merkel R, Nassoy P, Leung A, Ritchie K, Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 1999; 397(6714):50–53.

    Article  PubMed  CAS  Google Scholar 

  11. Yuan C, Chen A, Kolb P, Moy VT. Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry 2000; 39(33):10219–10223.

    Article  PubMed  CAS  Google Scholar 

  12. Benoit M. Cell adhesion measured by force spectroscopy on living cells. Methods Cell Biol 2002; 68:91–114.

    Article  PubMed  CAS  Google Scholar 

  13. Kuhlman P, Moy VT, Lollo BA, Brian AA. The accessory function of murine intercellular adhesion molecule-1 in T lymphocyte activation. Contributions of adhesion and co-activation. J Immunol 1991; 146(6):1773–1782.

    PubMed  CAS  Google Scholar 

  14. Benoit M, Gabriel D, Gerisch G, Gaub HE. Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2000; 2(6):313–317.

    Article  PubMed  CAS  Google Scholar 

  15. Heinz WF, Hoh JH. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol 1999; 17(4):143–150.

    Article  PubMed  CAS  Google Scholar 

  16. Willemsen OH, Snel MM, Cambi A, Greve J, De Grooth BG, Figdor CG. Biomolecular interactions measured by atomic force microscopy. Biophys J 2000; 79(6):3267–3281.

    Article  PubMed  CAS  Google Scholar 

  17. Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrum 1993; 64(7):1868–1873.

    Article  CAS  Google Scholar 

  18. Tees DFJ, Woodward JT, Hammer DA. Reliability theory for receptor-ligand bond dissociation. J Chem Phys 2001; 114:7483–7496.

    Article  CAS  Google Scholar 

  19. Evans E. Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annual Review of Biophysics & Biomolecular Structure 2001; 30:105–128.

    Article  CAS  Google Scholar 

  20. Hoh JH, Schoenenberger CA. Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J Cell Sci 1994; 107:1105–1114.

    PubMed  Google Scholar 

  21. Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 1996; 70(1):556–567.

    Article  PubMed  CAS  Google Scholar 

  22. Wu HW, Kuhn T, Moy VT. Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 1998; 20(5):389–397.

    PubMed  CAS  Google Scholar 

  23. Ganpule G, Knorr R, Miller JM, Carron CP, Dustin ML. Low affinity of cell surface lymphocyte function-associated antigen-1 (LFA-1) generates selectivity for cell-cell interactions. Journal of Immunology 1997; 159(6):2685–2692.

    CAS  Google Scholar 

  24. Huth JR, Olejniczak ET, Mendoza R, Liang H, Harris EA, Lupher ML Jr., Wilson AE, Fesik SW, Staunton DE. NMR and mutagenesis evidence for an I domain allosteric site that regulates lymphocyte function-associated antigen 1 ligand binding. Proc Natl Acad Sci USA 2000; 97(10):5231–5236.

    Article  PubMed  CAS  Google Scholar 

  25. van Kooyk Y, Figdor CG. Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr Opin Cell Biol 2000; 12(5):542–547.

    Article  PubMed  Google Scholar 

  26. Zhou X, Li J. Macrophage-enriched myristoylated alaninerich C kinase substrate and its phosphorylation is required for the phorbol esterstimulated diffusion of beta 2 integrin molecules. J Biol Chem 2000; 275(26):20217–20222.

    Article  PubMed  CAS  Google Scholar 

  27. Jones SL, Wang J, Turck CW, Brown EJ. A role for the actinbundling protein L-plastin in the regulation of leukocyte integrin function. Proc Natl Acad Sci USA 1998; 95(16):9331–9336.

    Article  PubMed  CAS  Google Scholar 

  28. Costa KD, Yin FC. Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. Journal of Biomechanical Engineering 1999; 121(5):462–471.

    Article  PubMed  CAS  Google Scholar 

  29. Sader JE. Parallel beam approximation for V-shaped atomic force micrscope cantilevers. Rev Sci Instrum 1995; 66:4583–4587.

    Article  CAS  Google Scholar 

  30. Senden TJ, Ducker WA. Experimental determination of spring constants in atomic force microscopy. Langmuir 1994; 10:1003–1004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent T. Moy.

Additional information

Published: January 15, 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojcikiewicz, E.P., Zhang, X. & Moy, V.T. Force and compliance measurements on living cells using atomic force microscopy (AFM). Biol. Proced. Online 6, 1–9 (2004). https://doi.org/10.1251/bpo67

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo67

Indexing terms