Skip to main content
  • Published:

Methods designed for the identification and characterization ofin vitro andin vivo chromatin assembly mutants inSaccharomyces cerevisiae

Abstract

Assembly of DNA into chromatin allows for the formation of a barrier that protects naked DNA from protein and chemical agents geared to degrade or metabolize DNA. Chromatin assembly occurs whenever a length of DNA becomes exposed to the cellular elements, whether during DNA synthesis or repair. This report describes tools to study chromatin assembly in the model systemSaccharomyces cerevisiae. Modifications to anin vitro chromatin assembly assay are described that allowed a brute force screen of temperature sensitive (ts) yeast strains in order to identify chromatin assembly defective extracts. This screen yielded mutations in genes encoding two ubiquitin protein ligases (E3s):RSP5, and a subunit of the Anaphase Promoting Complex (APC),APC5. Additional modifications are described that allow for a rapid analysis and anin vivo characterization of yeast chromatin assembly mutants, as well as any other mutant of interest. Our analysis suggests that thein vitro andin vivo chromatin assembly assays are responsive to different cellular signals, including cell cycle cues that involve different molecular networks.

References

  1. Loyola A, LeRoy G, Wang YH, Reinberg D. Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription.Genes Dev 2001; 15:2837–2851.

    PubMed  CAS  Google Scholar 

  2. Imhof A. Histone modifications: an assembly line for active chromatin?Curr Biol 2003; 13:R22–24.

    Article  PubMed  CAS  Google Scholar 

  3. Wolffe A. Chromatin. Structure and function. 1992; Academic Press, London.

    Google Scholar 

  4. Verreault A. De novo nucleosome assembly: new pieces in an old puzzle.Genes Dev 2000; 14:1430–1438.

    PubMed  CAS  Google Scholar 

  5. Smith S, Stillman B. Stepwise assembly of chromatin during DNA replicationin vitro.EMBO J 1991; 10:971–980.

    PubMed  CAS  Google Scholar 

  6. Verreault A, Kaufman PD, Kobayashi R, Stillman B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4.Cell 1996; 87:95–104.

    Article  PubMed  CAS  Google Scholar 

  7. Verreault A, Kaufman PD, Kobayashi R, Stillman B. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase.Curr Biol 1998; 8:96–108.

    Article  PubMed  CAS  Google Scholar 

  8. Jenuwein T, Allis CD. Translating the histone code.Science 2001; 293:1074–1080.

    Article  PubMed  CAS  Google Scholar 

  9. Berger SL. Histone modifications in transcriptional regulation.Curr Opin Genet Dev 2002; 12: 142–148.

    Article  PubMed  CAS  Google Scholar 

  10. Turner BM. Cellular memory and the histone code.Cell 2002; 111:285–291.

    Article  PubMed  CAS  Google Scholar 

  11. Schultz MC, Hockman DJ, Harkness TAA, Garinther W, Altheim B. Chromatin assembly in a yeast whole-cell extract.Proc Natl Acad Sci USA 1997; 94:9034–9039.

    Article  PubMed  CAS  Google Scholar 

  12. Ling X, Harkness TAA, Schultz MC, Fisher-Adams G, Grunstein M. Yeast histone H3 and H4 amino termini are important for nucleosome assemblyin vivo andin vitro: redundant and position-independent functions in assembly but not in gene regulation.Genes Dev 1996; 10:686–699.

    Article  PubMed  CAS  Google Scholar 

  13. Ma XJ, Wu J, Altheim BA, Schultz MC, Grunstein M. Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast.Proc Natl Acad Sci USA 1998; 95:6693–6698.

    Article  PubMed  CAS  Google Scholar 

  14. Altheim BA, Schultz MC. Histone modification governs the cell cycle regulation of a replication-independent chromatin assembly pathway inSaccharomyces cerevisiae.Proc Natl Acad Sci USA 1999; 96:1345–1350.

    Article  PubMed  CAS  Google Scholar 

  15. Harkness TAA, Davies GF, Ramaswamy V, Arnason TG. The ubiquitin-dependent targeting pathway inSaccharomyces cerevisiae plays a critical role in multiple chromatin assembly regulatory steps.Genetics 2002; 162:615–632.

    PubMed  CAS  Google Scholar 

  16. Ciechanover A. The ubiquitin-proteasome pathway: on protein death and cell life.EMBO J 1998; 17:7151–7160.

    Article  PubMed  CAS  Google Scholar 

  17. Wang G, McCaffery JM, Wendland B, Dupre S, Haguenauer-Tsapis R, Huibregtse JM. Localization of the Rsp5p ubiquitin-protein ligase at multiple sites within the endocytic pathway.Mol Cell Biol 2001; 21:3564–3675.

    Article  PubMed  CAS  Google Scholar 

  18. Gajewska B, Kaminska J, Jesionowska A, Martin NC, Hopper AK, Zoladek T. WW domains of Rsp5p define different functions: determination of roles in fluid phase and uracil permease endocytosis inSaccharomyces cerevisiae.Genetics 2001; 157:91–101.

    PubMed  CAS  Google Scholar 

  19. Yoon H-J, Feoktistova A, Wolfe BA, Jennings JL, Link AJ, Gould KL. Proteomics Analysis Identifies New Components of the Fission and Budding Yeast Anaphase-Promoting Complexes.Curr Biol 2002; 12:2048–2054.

    Article  PubMed  CAS  Google Scholar 

  20. Topper LM, Campbell MS, Tugendreich S, Daum JR, Burke DJ, Hieter P, Gorbsky GJ. The dephosphorylated form of the anaphase-promoting complex protein Cdc27/Apc3 concentrates on kinetochores and chromosome arms in mitosis.Cell Cycle 2002; 1:282–292.

    PubMed  CAS  Google Scholar 

  21. Zoladek T, Tobiasz A, Vaduva G, Boguta M, Martin NC, Hopper AK.MDP1, aSaccharomyces cerevisiae gene involved in mitochondrial/cytoplasmic protein distribution, is identical to the ubiquitin-protein ligase geneRSP5.Genetics 1997; 145:595–603.

    PubMed  CAS  Google Scholar 

  22. Fisk HA, Yaffe MP. A role for ubiquitination in mitochondrial inheritance inSaccharomyces cerevisiae.J Cell Biol 1999; 145:1199–1208.

    Article  PubMed  CAS  Google Scholar 

  23. Rotin D, Staub O, Haguenauer-Tsapis R. Ubiquitination and endocytosis of plasma membrane proteins: role of Nedd4/Rsp5p family of ubiquitin-protein ligases.J Mem Biol 2000; 176:1–17.

    Article  CAS  Google Scholar 

  24. Zachariae W, Nasmyth K. Whose end is destruction: cell division and the anaphase-promoting complex.Genes Dev 1999; 13:2039–2058.

    Article  PubMed  CAS  Google Scholar 

  25. Harper JW, Burton JL, Solomon MJ. The anaphasepromoting complex: it’s not just for mitosis any more.Genes Dev 2002; 16: 2179–2206.

    Article  PubMed  CAS  Google Scholar 

  26. Epstein CB, Cross FR. CLB5: a novel B cyclin from budding yeast with a role in S phase.Genes Dev 1992; 6:1695–1706.

    Article  PubMed  CAS  Google Scholar 

  27. Hartwell LH. Macromolecule synthesis in temperaturesensitive mutants of yeast.J Bacteriol 1967; 93:1662–1670.

    PubMed  CAS  Google Scholar 

  28. Han M, Chang M, Kim UJ, Grunstein M. Histone H2B repression causes cell-cycle-specific arrest in yeast: effects on chromosomal segregation, replication, and transcription.Cell 1987; 48:589–597.

    Article  PubMed  CAS  Google Scholar 

  29. Kim UJ, Han M, Kayne P, Grunstein M. Effects of histone H4 depletion on the cell cycle and transcription ofSaccharomyces cerevisiae.EMBO J 1988; 7:2211–2219.

    PubMed  CAS  Google Scholar 

  30. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K. Current protocols in molecular biology. 1993; New York: John Wiley & Sons.

    Google Scholar 

  31. Mann RK, Grunstein M. Histone H3 N-terminal mutations allow hyperactivation of the yeastGAL1 genein vivo. EMBO J 1992;11:3297–3306.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy A. A. Harkness.

Additional information

Published: July 3, 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harkness, T.A.A., Arnason, T.G., Legrand, C. et al. Methods designed for the identification and characterization ofin vitro andin vivo chromatin assembly mutants inSaccharomyces cerevisiae . Biol. Proced. Online 5, 162–169 (2003). https://doi.org/10.1251/bpo58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo58

Indexing terms