Skip to main content
  • Published:

Measuring solution viscosity and its effect on enzyme activity

Abstract

In proteins, some processes require conformational changes involving structural domain diffusion. Among these processes are protein folding, unfolding and enzyme catalysis. During catalysis some enzymes undergo large conformational changes as they progress through the catalytic cycle. According to Kramers theory, solvent viscosity results in friction against proteins in solution, and this should result in decreased motion, inhibiting catalysis in motile enzymes. Solution viscosity was increased by adding increasing concentrations of glycerol, sucrose and trehalose, resulting in a decrease in the reaction rate of the H+-ATPase from the plasma membrane ofKluyveromyces lactis. A direct correlation was found between viscosity (η) and the inhibition of the maximum rate of catalysis (V max). The protocol used to measure viscosity by means of a falling ball type viscometer is described, together with the determination of enzyme kinetics and the application of Kramers’ equation to evaluate the effect of viscosity on the rate of ATP hydrolysis by the H+-ATPase.

Abbreviations

EGTA:

Ethylene glycol-bis(beta-aminoethyl ether)-N,N,N′,N′,-tetraacetic acid

PIPES:

Piperazine-N,N′-bis(2-ethanesulfonic acid)

Tris:

Tris(hydroxymethyl)aminomethane

SDS-PAGE:

Sodium-dodecyl-sulphate-Polyacrylamide Gel Electrophoresis

YPD:

Yeast-Peptone-Dextrose

References

  1. Jacob M, Schmid FX. Protein folding as a diffusional process.Biochemistry 1999; 38:13773–13779.

    Article  PubMed  CAS  Google Scholar 

  2. Kramers HA. Brownian motion in a field of force and the diffusion model of chemical reactions.Physica 1940; 7:284–304.

    Article  CAS  Google Scholar 

  3. Jacob M, Geeves M, Holterman G, Schmid FX. Diffusional crossing in a two-state protein folding reaction.Nature Struc Biol 1999; 6:923–926.

    Article  CAS  Google Scholar 

  4. Demchenko AP, Ruskyn OI, Saburova EA. Kinetics of the lactate dehydrogenase reaction in high-viscosity media.Biochim Biophys Acta 1989; 998: 196–203.

    PubMed  CAS  Google Scholar 

  5. Zhang X, Beuron F, Freemont PS. Machinery of protein folding and unfolding.Curr Opin Struct Biol 2002; 12:231–238.

    Article  PubMed  Google Scholar 

  6. Frauenfelder H, Parak F, Young RD. Conformational substates in proteins.Annu Rev Biophys Biophys Chem 1988; 17:451–479.

    Article  PubMed  CAS  Google Scholar 

  7. van Mierlo CP, Steensma E. Protein folding and stability investigated by fluorescence, circular dichroism (CD), and nuclear magnetic resonance (NMR) spectroscopy: the flavodoxin story.J Biotechnol 2000; 79:281–298.

    Article  PubMed  Google Scholar 

  8. Cordone L, Galajda P, Vitrano E, Gassmann A, Ostermann A, Parak F. A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glass.Eur Biophys J 1998; 27:173–176.

    Article  PubMed  CAS  Google Scholar 

  9. Toyoshima C, Takasako M, Nomura H, Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution.Nature 2000; 405:647–655.

    Article  PubMed  CAS  Google Scholar 

  10. Nakamoto RK, Slayman CW. Molecular properties of the fungal plasma-membrane H+-ATPase.J Bioenerg Biomembr 1989; 21:621–632.

    Article  PubMed  CAS  Google Scholar 

  11. Sampedro JG, Muñoz-Clares RA, Uribe S. Trehalosemediated inhibition of the plasma membrane H+-ATPase fromKluyveromyces lactis: dependence on viscosity and temperature.J Bacteriol 2002; 184:4384–4391.

    Article  PubMed  CAS  Google Scholar 

  12. Bowman BJ, Slayman CW. The effects of vanadate on the plasma membrane ATPase ofNeurospora crassa.J Biol Chem 1979; 254:2928–2934.

    PubMed  CAS  Google Scholar 

  13. Guerra G, Uribe S, Pardo JP. Reactivity of the H+-ATPase fromKluyveromyces lactis to sulfhydryl reagents.Arch Biochem Biophys 1995; 321:101–107.

    Article  PubMed  CAS  Google Scholar 

  14. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent.J Biol Chem 1951; 193:265–275.

    PubMed  CAS  Google Scholar 

  15. Anderson KW, Murphy AJ. Alterations in the structure of the ribose moiety of ATP reduce its effectiveness as a substrate for the sarcoplasmic reticulum ATPase.J Biol Chem 1983; 258:14276–14278.

    PubMed  CAS  Google Scholar 

  16. Rampp M, Buttersack C, Ludemann HD. c,T-dependence of the viscosity and the self-diffusion coefficients in some aqueous carbohydrate solutions.Carbohydr Res 2000; 328:561–572.

    Article  PubMed  CAS  Google Scholar 

  17. Colombo MF, Rau DC, Parsegian A. Protein solvation in allosteric regulation:a water effect on hemoglobin.Science 1992; 256:655–659.

    Article  PubMed  CAS  Google Scholar 

  18. Sweet W, Blanchard JS. Fumarase:viscosity dependence of the kinetics parameters.Arch Biochem Biophys 1990; 277:196–202.

    Article  PubMed  CAS  Google Scholar 

  19. Pocker Y, Janjic N. Enzyme kinetics in solvent of increased viscosity. Dynamic aspects of carbonic anhydrase catalysis.Biochemistry 1990; 26:2597–2606.

    Article  Google Scholar 

  20. Timasheff SN. The control of protein stability and association by weak interactions with water: How do these solvents affects these process.Annu Rev Biophys Biomol Struct 1993; 22:67–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José G. Sampedro.

Additional information

Published: May 1, 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uribe, S., Sampedro, J.G. Measuring solution viscosity and its effect on enzyme activity. Biol. Proced. Online 5, 108–115 (2003). https://doi.org/10.1251/bpo52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo52

Indexing terms